Generalized Diffusion Simulation-Based Tractography

نویسندگان

  • Qi Zhuang
  • Brian T. Gold
  • Ruiwang Huang
  • Xuwei Liang
  • Ning Cao
  • Jun Zhang
چکیده

Diffusion weighted imaging (DWI) techniques have been used to study human brain white matter fiber structures in vivo. Commonly used standard diffusion tensor magnetic resonance imaging (DTI) tractography derived from the second order diffusion tensor model has limitations in its ability to resolve complex fiber tracts. We propose a new fiber tracking method based on the generalized diffusion tensor (GDT) model. This new method better models the anisotropic diffusion process in human brain by using the generalized diffusion simulation-based fiber tractography (GDST). Due to the additional information provided by GDT, the GDST method simulates the underlying physical diffusion process of the human brain more accurately than does the standard DTI method. The effectiveness of the new fiber tracking algorithm was demonstrated via analyses on real and synthetic DWI datasets. In addition, the general analytic expression of high order b matrix is derived in the case of twice refocused spin-echo (TRSE) pulse sequence which is used in the DWI data acquisition. Based on our results, we discuss the benefits of GDT and the second order diffusion tensor on fiber tracking.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fiber Tractography in Diffusion Tensor Magnetic Resonance Imaging: A Survey and Beyond

Diffusion tensor magnetic resonance imaging (DT-MRI) is the first noninvasive in vivo imaging modality with the potential to generate fiber tract trajectories in soft fibrous tissues, such as the brain white matter. Several newly developed fiber reconstruction and tractography techniques based on DT-MRI are reviewed in this article, including streamline fiber tracking techniques, diffusion tens...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

Methods to Improve Fiber Reconstruction at DTI-Based Tractography in the Area of Brain Tumor: Case Illustration and Literature Review

Background and Aim: DTI-based tractography could help us to visualize the spatial relation of fiber tracts to brain lesions. Several factors may interfere with the procedure of diffusion-based tractography, especially in brain tumors. The aim of the current study is to discuss several solutions to improve the procedure of fiber reconstruction adjacent or inside brain lesions. Illustrative cases...

متن کامل

DT-MRI Tractography and its Application in Cognitive Neuroscience

Recent advancement of MRI techniques and development of new methods of image analysis have allowed us to study large neural tracts within the human brain. This is based on the principle of diffusion tensor MRI that is similar to that of diffusion-weighted imaging but takes magnitude and direction of the diffusion of water into account. Using this technique we have been able to define large neur...

متن کامل

Performance of unscented Kalman filter tractography in edema: Analysis of the two-tensor model

Diffusion MRI tractography is increasingly used in pre-operative neurosurgical planning to visualize critical fiber tracts. However, a major challenge for conventional tractography, especially in patients with brain tumors, is tracing fiber tracts that are affected by vasogenic edema, which increases water content in the tissue and lowers diffusion anisotropy. One strategy for improving fiber t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008